Radical relations in orthogonal groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On local gamma factors for orthogonal groups and unitary groups

‎In this paper‎, ‎we find a relation between the proportionality factors which arise from the functional equations of two families of local Rankin-Selberg convolutions for‎ ‎irreducible admissible representations of orthogonal groups‎, ‎or unitary groups‎. ‎One family is that of local integrals of the doubling method‎, ‎and the other family is‎ ‎that of local integrals expressed in terms of sph...

متن کامل

Algebraic Groups I. Properties of orthogonal groups

Let V be a vector bundle of constant rank n ≥ 1 over a scheme S, and let q : V → L be a quadratic form valued in a line bundle L, so we get a symmetric bilinear form Bq : V × V → L defined by Bq(x, y) = q(x+ y)− q(x)− q(y). Assume q is fiberwise non-zero over S, so (q = 0) ⊂ P(V ∗) is an S-flat hypersurface with fibers of dimension n − 2 (understood to be empty when n = 1). By HW2, Exercise 4 (...

متن کامل

od-characterization of some orthogonal groups

in this paper, it was shown that , where  and , and , where  is not prime and , are od-characterizable.

متن کامل

Canonical Dimension of Orthogonal Groups

We prove Berhuy-Reichstein’s conjecture on the canonical dimension of orthogonal groups showing that for any integer n ≥ 1, the canonical dimension of SO2n+1 and of SO2n+2 is equal to n(n + 1)/2. More precisely, for a given (2n + 1)-dimensional quadratic form φ defined over an arbitrary field F of characteristic 6= 2, we establish certain property of the correspondences on the orthogonal grassm...

متن کامل

Sporadic isogenies to orthogonal groups

SO(p, q) = {g ∈ SLp+q(R) : g>Qg = Q} (where Q = ( 1p 0 0 −1q ) )  SU(2) −→ SO(3) SL2(R) −→ SO(2, 1) SU(2)× SU(2) −→ SO(4) SL2(C) −→ SO(3, 1) SL2(R)× SL2(R) −→ SO(2, 2) Sp∗(2, 0) −→ SO(5) Sp∗(1, 1) −→ SO(4, 1) Sp2(R) −→ SO(3, 2) SU(4) −→ SO(6) SL2(H) −→ SO(5, 1) SU(2, 2) −→ SO(4, 2) SL4(R) −→ SO(3, 3) Thus, these are small examples...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1981

ISSN: 0024-3795

DOI: 10.1016/0024-3795(81)90014-8